Influence of micromachined targets on laser accelerated proton beam profiles

نویسندگان

  • Malay Dalui
  • Hannes Pahl
  • Claes-Göran Wahlström
چکیده

High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5–2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7×10 W cm. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing an approprate solenoid and magnetic field for the HZDR laser-driven beamline

Nowadays, due to the high costs and large dimensions of the conventional proton accelerators, other optimal methods for producing the proton beam have been studied. Using of Laser-driven proton accelerators is one of the important and new methods. In laser-driven ion acceleration, a highly ultra-intense laser pulse interacts with solid density targets and will create a plasma media that will ac...

متن کامل

Investigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study

Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...

متن کامل

Active manipulation of the spatial energy distribution of laser-accelerated proton beams.

The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (>10(19)Wcm2) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (<10(13)Wcm2) nanosecond laser pulses, focused onto the front surface of the target foil prior to the arrival of the high intensity pulse, it is demonstrated that the proton beam profile c...

متن کامل

Influence of non-gaussian laser beam profiles on proton acceleration

10 12 V/m. The acceleration was found to take place within a few ps only. The beam always is directed normal to the rear surface of the target with an emittance being superior compared to conventional accelerator beams [2, 3]. The laser pulse accelerates electrons to relativistic energies in the front side preplasma formed by the prepulse. They penetrate the target and escape at the rear side. ...

متن کامل

Space-charge effects on laser-accelerated proton beams captured by a solenoidal magnetic field

In context of the LIGHT project (Laser-Ion Generation, Handling and Transport) [1], studies on the capability of a solenoidal magnetic field to collimate and transport laser-accelerated proton beams were carried out. Results of preliminary particle-in-cell simulations [2] and experiments at the PHELIX laser facility [1, 3] demand a detailed analysis of the space-charge influence. Therefore, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018